Cubic Splines

Given a function f defined on [a,b] and a set of nodes $a=x_0 < x_1 < \cdots < x_n = b$, a **cubic spline interpolant** S for f is a function that satisfies the following conditions:

(a)
$$S(x)$$
 is a cubic polynomial, denoted $S_j(x)$, on the subinterval $[x_j, x_{j+1}]$ for each $j = 0, 1, ..., n-1$;

(b)
$$S_j(x_j) = f(x_j)$$
 and $S_j(x_{j+1}) = f(x_{j+1})$ for each $j = 0, 1, ..., n-1$;

(c)
$$S_{i+1}(x_{i+1}) = S_i(x_{i+1})$$
 for each $j = 0, 1, ..., n-2$; (Implied by (b).)

(d)
$$S'_{i+1}(x_{j+1}) = S'_i(x_{j+1})$$
 for each $j = 0, 1, ..., n-2$;

(e)
$$S''_{i+1}(x_{j+1}) = S''_i(x_{j+1})$$
 for each $j = 0, 1, ..., n-2$;

(f) One of the following sets of boundary conditions is satisfied:

(i)
$$S''(x_0) = S''(x_n) = 0$$
 (natural (or free) boundary);

(ii)
$$S'(x_0) = f'(x_0)$$
 and $S'(x_n) = f'(x_n)$ (clamped boundary).

Example

Construct a natural cubic spline that passes through the points (1, 2), (2, 3), and (3, 5).

Solution This spline consists of two cubics. The first for the interval [1, 2], denoted

$$S_0(x) = a_0 + b_0(x - 1) + c_0(x - 1)^2 + d_0(x - 1)^3,$$

and the other for [2, 3], denoted

$$S_1(x) = a_1 + b_1(x-2) + c_1(x-2)^2 + d_1(x-2)^3$$
.

There are 8 constants to be determined, which requires 8 conditions. Four conditions come from the fact that the splines must agree with the data at the nodes. Hence

$$2 = f(1) = a_0$$
, $3 = f(2) = a_0 + b_0 + c_0 + d_0$, $3 = f(2) = a_1$, and $5 = f(3) = a_1 + b_1 + c_1 + d_1$.

Two more come from the fact that $S'_0(2) = S'_1(2)$ and $S''_0(2) = S''_1(2)$. These are

$$S'_0(2) = S'_1(2)$$
: $b_0 + 2c_0 + 3d_0 = b_1$ and $S''_0(2) = S''_1(2)$: $2c_0 + 6d_0 = 2c_1$

The final two come from the natural boundary conditions:

$$S_0''(1) = 0$$
: $2c_0 = 0$ and $S_1''(3) = 0$: $2c_1 + 6d_1 = 0$.

Solving this system of equations gives the spline

$$S(x) = \begin{cases} 2 + \frac{3}{4}(x-1) + \frac{1}{4}(x-1)^3, & \text{for } x \in [1,2] \\ 3 + \frac{3}{2}(x-2) + \frac{3}{4}(x-2)^2 - \frac{1}{4}(x-2)^3, & \text{for } x \in [2,3] \end{cases}$$

Construction of a Cubic Spline

$$S_j(x) = a_j + b_j(x - x_j) + c_j(x - x_j)^2 + d_j(x - x_j)^3 \qquad j = 0, 1, \dots, n - 1$$

$$S_j(x_j) = a_j = f(x_j)$$

Applying condition (c) in definition of a cubic spline:

$$a_{j+1} = S_{j+1}(x_{j+1}) = S_j(x_{j+1}) = a_j + b_j(x_{j+1} - x_j) + c_j(x_{j+1} - x_j)^2 + d_j(x_{j+1} - x_j)^3$$

$$j = 0, 1, \dots, n-2$$

$$h_j = x_{j+1} - x_j$$
 $j = 0, 1, ..., n-1$

we also define $a_n = f(x_n)$,

$$a_{j+1} = a_j + b_j h_j + c_j h_j^2 + d_j h_j^3$$
(3.15)

$$j = 0, 1, \dots, n - 1$$

define $b_n = S'(x_n)$

$$S'_{j}(x) = b_{j} + 2c_{j}(x - x_{j}) + 3d_{j}(x - x_{j})^{2}$$

$$S'_{j}(x_{j}) = b_{j}$$
 $j = 0, 1, ..., n-1$

Applying condition (d) gives

$$b_{j+1} = b_j + 2c_j h_j + 3d_j h_j^2, (3.16)$$

$$j = 0, 1, \dots, n - 1$$

define
$$c_n = S''(x_n)/2$$

applying condition (e)

$$j = 0, 1, \dots, n - 1$$

 $c_{i+1} = c_i + 3d_i h_i.$

Solving for d_j in Eq. (3.17) and substituting this value into Eqs. (3.15) and (3.16) gives, for each j = 0, 1, ..., n - 1, the new equations

$$a_{j+1} = a_j + b_j h_j + \frac{h_j^2}{3} (2c_j + c_{j+1})$$
 (3.18)

and

$$b_{i+1} = b_i + h_i(c_i + c_{i+1}). (3.19)$$

The final relationship involving the coefficients is obtained by solving the appropriate equation in the form of equation (3.18), first for b_j ,

$$b_j = \frac{1}{h_i}(a_{j+1} - a_j) - \frac{h_j}{3}(2c_j + c_{j+1}),$$
(3.20)

and then, with a reduction of the index, for b_{j-1} . This gives

$$b_{j-1} = \frac{1}{h_{j-1}}(a_j - a_{j-1}) - \frac{h_{j-1}}{3}(2c_{j-1} + c_j).$$

Substituting these values into the equation derived from Eq. (3.19), with the index reduced by one, gives the linear system of equations

$$h_{j-1}c_{j-1} + 2(h_{j-1} + h_j)c_j + h_jc_{j+1} = \frac{3}{h_j}(a_{j+1} - a_j) - \frac{3}{h_{j-1}}(a_j - a_{j-1}),$$

$$j = 1, 2, \dots, n-1$$
(3.21)

This system involves only the $\{c_j\}_{j=0}^n$ as unknowns.

So once the values of $\{c_j\}_{j=0}^n$ are determined, it is a simple matter to find

 $\{b_j\}_{j=0}^{n-1}$ from Eq. (3.20) and $\{d_j\}_{j=0}^{n-1}$ from Eq. (3.17).

The major question that arises is whether the values of $\{c_j\}_{j=0}^n$ can be

found using the system of equations given in (3.21)

Natural Splines

Theorem

If f is defined at $a = x_0 < x_1 < \dots < x_n = b$, then f has a unique natural spline interpolant S on the nodes x_0, x_1, \dots, x_n ; that is, a spline interpolant that satisfies the natural boundary conditions S''(a) = 0 and S''(b) = 0.

Proof The boundary conditions in this case imply that $c_n = S''(x_n)/2 = 0$ and that

$$0 = S''(x_0) = 2c_0 + 6d_0(x_0 - x_0),$$

so $c_0 = 0$. The two equations $c_0 = 0$ and $c_n = 0$ together with the equations in (3.21) produce a linear system described by the vector equation $A\mathbf{x} = \mathbf{b}$, where A is the $(n + 1) \times (n + 1)$ matrix

and **b** and **x** are the vectors

$$\mathbf{b} = \begin{bmatrix} 0 \\ \frac{3}{h_1}(a_2 - a_1) - \frac{3}{h_0}(a_1 - a_0) \\ \vdots \\ \frac{3}{h_{n-1}}(a_n - a_{n-1}) - \frac{3}{h_{n-2}}(a_{n-1} - a_{n-2}) \\ 0 \end{bmatrix} \quad \text{and} \quad \mathbf{x} = \begin{bmatrix} c_0 \\ c_1 \\ \vdots \\ c_n \end{bmatrix}.$$

Matrix A is strictly diagonally dominant. A linear system with a matrix of this form has a unique Solution.

Example

Use the data points (0, 1), (1, e), $(2, e^2)$, and $(3, e^3)$ to form a natural spline S(x) that approximates $f(x) = e^x$.

Solution

$$S_j(x) = a_j + b_j(x - x_j) + c_j(x - x_j)^2 + d_j(x - x_j)^3 \qquad j = 0, 1, \dots, n - 1$$

$$n = 3$$
, $h_0 = h_1 = h_2 = 1$, $a_0 = 1$, $a_1 = e$, $a_2 = e^2$, and $a_3 = e^3$

$$A = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 1 & 4 & 1 & 0 \\ 0 & 1 & 4 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} 0 \\ 3(e^2 - 2e + 1) \\ 3(e^3 - 2e^2 + e) \\ 0 \end{bmatrix}, \quad \text{and} \quad \mathbf{x} = \begin{bmatrix} c_0 \\ c_1 \\ c_2 \\ c_3 \end{bmatrix}$$

 $A\mathbf{x} = \mathbf{b}$ is equivalent to the system of equations

$$c_0 = 0,$$

 $c_0 + 4c_1 + c_2 = 3(e^2 - 2e + 1),$
 $c_1 + 4c_2 + c_3 = 3(e^3 - 2e^2 + e),$
 $c_3 = 0.$

This system has the solution $c_0 = c_3 = 0$, and

$$c_1 = \frac{1}{5}(-e^3 + 6e^2 - 9e + 4) \approx 0.75685$$
$$c_2 = \frac{1}{5}(4e^3 - 9e^2 + 6e - 1) \approx 5.83007$$

$$b_j = \frac{1}{h_i}(a_{j+1} - a_j) - \frac{h_j}{3}(2c_j + c_{j+1}), \tag{3.20}$$

$$b_0 = \frac{1}{h_0}(a_1 - a_0) - \frac{h_0}{3}(c_1 + 2c_0)$$

$$= (e-1) - \frac{1}{15}(-e^3 + 6e^2 - 9e + 4) \approx 1.46600,$$

$$b_1 = \frac{1}{h_1}(a_2 - a_1) - \frac{h_1}{3}(c_2 + 2c_1)$$

$$= (e^2 - e) - \frac{1}{15}(2e^3 + 3e^2 - 12e + 7) \approx 2.22285,$$

$$b_2 = \frac{1}{h_2}(a_3 - a_2) - \frac{h_2}{3}(c_3 + 2c_2)$$

$$= (e^3 - e^2) - \frac{1}{15}(8e^3 - 18e^2 + 12e - 2) \approx 8.80977.$$

$$c_{j+1} = c_j + 3d_j h_j. (3.17)$$

$$d_0 = \frac{1}{3h_0}(c_1 - c_0) = \frac{1}{15}(-e^3 + 6e^2 - 9e + 4) \approx 0.25228,$$

$$d_1 = \frac{1}{3h_1}(c_2 - c_1) = \frac{1}{3}(e^3 - 3e^2 + 3e - 1) \approx 1.69107,$$

$$d_2 = \frac{1}{3h_2}(c_3 - c_1) = \frac{1}{15}(-4e^3 + 9e^2 - 6e + 1) \approx -1.94336$$

$$S(x) = \begin{cases} 1 + 1.46600x + 0.25228x^3, & \text{for } x \in [0, 1], \\ 2.71828 + 2.22285(x - 1) + 0.75685(x - 1)^2 + 1.69107(x - 1)^3, & \text{for } x \in [1, 2], \\ 7.38906 + 8.80977(x - 2) + 5.83007(x - 2)^2 - 1.94336(x - 2)^3, & \text{for } x \in [2, 3]. \end{cases}$$

Illustration

To approximate the integral of $f(x) = e^x$ on [0, 3],

$$\int_0^3 S(x) = \int_0^1 1 + 1.46600x + 0.25228x^3 dx$$

$$+ \int_1^2 2.71828 + 2.22285(x - 1) + 0.75685(x - 1)^2 + 1.69107(x - 1)^3 dx$$

$$+ \int_2^3 7.38906 + 8.80977(x - 2) + 5.83007(x - 2)^2 - 1.94336(x - 2)^3 dx.$$

$$= 19.55229.$$

The exact value is,

$$\int_0^3 e^x \, dx = e^3 - 1 \approx 20.08553692 - 1 = 19.08553692$$