Cubic Splines

Given a function f defined on $[a, b]$ and a set of nodes $a=x_{0}<x_{1}<\cdots<$ $x_{n}=b$, a cubic spline interpolant S for f is a function that satisfies the following conditions:
(a) $S(x)$ is a cubic polynomial, denoted $S_{j}(x)$, on the subinterval $\left[x_{j}, x_{j+1}\right]$ for each $j=0,1, \ldots, n-1$;
(b) $S_{j}\left(x_{j}\right)=f\left(x_{j}\right)$ and $S_{j}\left(x_{j+1}\right)=f\left(x_{j+1}\right)$ for each $j=0,1, \ldots, n-1$;
(c) $S_{j+1}\left(x_{j+1}\right)=S_{j}\left(x_{j+1}\right)$ for each $j=0,1, \ldots, n-2 ;(\operatorname{Implied}$ by $($ b) $)$.
(d) $S_{j+1}^{\prime}\left(x_{j+1}\right)=S_{j}^{\prime}\left(x_{j+1}\right)$ for each $j=0,1, \ldots, n-2$;
(e) $S_{j+1}^{\prime \prime}\left(x_{j+1}\right)=S_{j}^{\prime \prime}\left(x_{j+1}\right)$ for each $j=0,1, \ldots, n-2$;
(f) One of the following sets of boundary conditions is satisfied:
(i) $S^{\prime \prime}\left(x_{0}\right)=S^{\prime \prime}\left(x_{n}\right)=0 \quad$ (natural (or free) boundary);
(ii) $S^{\prime}\left(x_{0}\right)=f^{\prime}\left(x_{0}\right)$ and $S^{\prime}\left(x_{n}\right)=f^{\prime}\left(x_{n}\right) \quad$ (clamped boundary).

Example

Construct a natural cubic spline that passes through the points $(1,2),(2,3)$, and $(3,5)$.
Solution This spline consists of two cubics. The first for the interval [1,2], denoted

$$
S_{0}(x)=a_{0}+b_{0}(x-1)+c_{0}(x-1)^{2}+d_{0}(x-1)^{3},
$$

and the other for $[2,3]$, denoted

$$
S_{1}(x)=a_{1}+b_{1}(x-2)+c_{1}(x-2)^{2}+d_{1}(x-2)^{3} .
$$

There are 8 constants to be determined, which requires 8 conditions. Four conditions come from the fact that the splines must agree with the data at the nodes. Hence

$$
\begin{aligned}
& 2=f(1)=a_{0}, \quad 3=f(2)=a_{0}+b_{0}+c_{0}+d_{0}, \quad 3=f(2)=a_{1}, \quad \text { and } \\
& 5=f(3)=a_{1}+b_{1}+c_{1}+d_{1} .
\end{aligned}
$$

Two more come from the fact that $S_{0}^{\prime}(2)=S_{1}^{\prime}(2)$ and $S_{0}^{\prime \prime}(2)=S_{1}^{\prime \prime}(2)$. These are
$S_{0}^{\prime}(2)=S_{1}^{\prime}(2): \quad b_{0}+2 c_{0}+3 d_{0}=b_{1} \quad$ and $\quad S_{0}^{\prime \prime}(2)=S_{1}^{\prime \prime}(2): \quad 2 c_{0}+6 d_{0}=2 c_{1}$

The final two come from the natural boundary conditions:

$$
S_{0}^{\prime \prime}(1)=0: \quad 2 c_{0}=0 \quad \text { and } \quad S_{1}^{\prime \prime}(3)=0: \quad 2 c_{1}+6 d_{1}=0 .
$$

Solving this system of equations gives the spline

$$
S(x)=\left\{\begin{array}{l}
2+\frac{3}{4}(x-1)+\frac{1}{4}(x-1)^{3}, \text { for } x \in[1,2] \\
3+\frac{3}{2}(x-2)+\frac{3}{4}(x-2)^{2}-\frac{1}{4}(x-2)^{3}, \text { for } x \in[2,3]
\end{array}\right.
$$

Construction of a Cubic Spline

$$
\begin{aligned}
& S_{j}(x)=a_{j}+b_{j}\left(x-x_{j}\right)+c_{j}\left(x-x_{j}\right)^{2}+d_{j}\left(x-x_{j}\right)^{3} \quad j=0,1, \ldots, n-1 \\
& S_{j}\left(x_{j}\right)=a_{j}=f\left(x_{j}\right)
\end{aligned}
$$

Applying condition (c) in definition of a cubic spline:

$$
\begin{aligned}
& a_{j+1}=S_{j+1}\left(x_{j+1}\right)=S_{j}\left(x_{j+1}\right)=a_{j}+b_{j}\left(x_{j+1}-x_{j}\right)+c_{j}\left(x_{j+1}-x_{j}\right)^{2}+d_{j}\left(x_{j+1}-x_{j}\right)^{3} \\
& j=0,1, \ldots, n-2 \\
& h_{j}=x_{j+1}-x_{j} \quad j=0,1, \ldots, n-1
\end{aligned}
$$

we also define $a_{n}=f\left(x_{n}\right)$,

$$
\begin{align*}
& a_{j+1}=a_{j}+b_{j} h_{j}+c_{j} h_{j}^{2}+d_{j} h_{j}^{3} \tag{3.15}\\
& j=0,1, \ldots, n-1
\end{align*}
$$

define $b_{n}=S^{\prime}\left(x_{n}\right)$

$$
\begin{aligned}
& S_{j}^{\prime}(x)=b_{j}+2 c_{j}\left(x-x_{j}\right)+3 d_{j}\left(x-x_{j}\right)^{2} \\
& S_{j}^{\prime}\left(x_{j}\right)=b_{j} \quad j=0,1, \ldots, n-1
\end{aligned}
$$

Applying condition (d) gives

$$
\begin{align*}
& b_{j+1}=b_{j}+2 c_{j} h_{j}+3 d_{j} h_{j}^{2} \tag{3.16}\\
& j=0,1, \ldots, n-1
\end{align*}
$$

define $c_{n}=S^{\prime \prime}\left(x_{n}\right) / 2$
applying condition (e)

$$
\begin{align*}
& c_{j+1}=c_{j}+3 d_{j} h_{j} \tag{3.17}\\
& j=0,1, \ldots, n-1
\end{align*}
$$

Solving for d_{j} in Eq. (3.17) and substituting this value into Eqs. (3.15) and (3.16) gives, for each $j=0,1, \ldots, n-1$, the new equations

$$
\begin{equation*}
a_{j+1}=a_{j}+b_{j} h_{j}+\frac{h_{j}^{2}}{3}\left(2 c_{j}+c_{j+1}\right) \tag{3.18}
\end{equation*}
$$

and

$$
\begin{equation*}
b_{j+1}=b_{j}+h_{j}\left(c_{j}+c_{j+1}\right) . \tag{3.19}
\end{equation*}
$$

The final relationship involving the coefficients is obtained by solving the appropriate equation in the form of equation (3.18), first for b_{j},

$$
\begin{equation*}
b_{j}=\frac{1}{h_{j}}\left(a_{j+1}-a_{j}\right)-\frac{h_{j}}{3}\left(2 c_{j}+c_{j+1}\right), \tag{3.20}
\end{equation*}
$$

and then, with a reduction of the index, for b_{j-1}. This gives

$$
b_{j-1}=\frac{1}{h_{j-1}}\left(a_{j}-a_{j-1}\right)-\frac{h_{j-1}}{3}\left(2 c_{j-1}+c_{j}\right)
$$

Substituting these values into the equation defired from Eq. (3.19), with the index reduced by one, gives the ininear system of equations

$$
\begin{align*}
& h_{j-1} c_{j-1}+2\left(h_{j-1}+h_{j}\right) c_{j}+h_{j} c_{j+1}=\frac{3}{h_{j}}\left(a_{j+1}-a_{j}\right)-\frac{3}{h_{j-1}}\left(a_{j}-a_{j-1}\right), \tag{3.21}\\
& j=1,2, \ldots, n-1
\end{align*}
$$

This system involves only the $\left\{c_{j}\right\}_{j=0}^{n}$ as unknowns.
So once the values of $\left\{c_{j}\right\}_{j=0}^{n}$ are determined, it is a simple matter to find
$\left\{b_{j}\right\}_{j=0}^{n-1}$ from Eq. (3.20) and $\left\{d_{j}\right\}_{j=0}^{n-1}$ from Eq. (3.17).
The major question that arises is whether the values of $\left\{c_{j}\right\}_{j=0}^{n}$ can be
found using the system of equations given in (3.21)

Natural Splines

Theorem

If f is defined at $a=x_{0}<x_{1}<\cdots<x_{n}=b$, then f has a unique natural spline interpolant S on the nodes $x_{0}, x_{1}, \ldots, x_{n}$; that is, a spline interpolant that satisfies the natural boundary conditions $S^{\prime \prime}(a)=0$ and $S^{\prime \prime}(b)=0$.

Proof The boundary conditions in this case imply that $c_{n}=S^{\prime \prime}\left(x_{n}\right) / 2=0$ and that

$$
0=S^{\prime \prime}\left(x_{0}\right)=2 c_{0}+6 d_{0}\left(x_{0}-x_{0}\right),
$$

so $c_{0}=0$. The two equations $c_{0}=0$ and $c_{n}=0$ together with the equations in (3.21) produce a linear system described by the vector equation $A x=b$, where A is the $(n+1) x$ $(n+1)$ matrix
and \mathbf{b} and \mathbf{x} are the vectors

$$
\mathbf{b}=\left[\begin{array}{c}
0 \\
\frac{3}{h_{1}}\left(a_{2}-a_{1}\right)-\frac{3}{h_{0}}\left(a_{1}-a_{0}\right) \\
\vdots \\
\frac{3}{h_{n-1}}\left(a_{n}-a_{n-1}\right)-\frac{3}{h_{n-2}}\left(a_{n-1}-a_{n-2}\right) \\
0
\end{array}\right] \quad \text { and } \quad \mathbf{x}=\left[\begin{array}{c}
c_{0} \\
c_{1} \\
\vdots \\
c_{n}
\end{array}\right]
$$

Matrix A is strictly diagonally dominant. A linear system with a matrix of this form has a unique Solution.

Example

Use the data points $(0,1),(1, e),\left(2, e^{2}\right)$, and $\left(3, e^{3}\right)$ to form a natural spline $S(x)$ that approximates $f(x)=e^{x}$.

Solution

$$
\begin{aligned}
& S_{j}(x)=a_{j}+b_{j}\left(x-x_{j}\right)+c_{j}\left(x-x_{j}\right)^{2}+d_{j}\left(x-x_{j}\right)^{3} \quad j=0,1, \ldots, n-1 \\
& n=3, h_{0}=h_{1}=h_{2}=1, a_{0}=1, a_{1}=e, a_{2}=e^{2}, \text { and } a_{3}=e^{3}
\end{aligned}
$$

$$
A=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
1 & 4 & 1 & 0 \\
0 & 1 & 4 & 1 \\
0 & 0 & 0 & 1
\end{array}\right], \quad \mathbf{b}=\left[\begin{array}{c}
0 \\
3\left(e^{2}-2 e+1\right) \\
3\left(e^{3}-2 e^{2}+e\right) \\
0
\end{array}\right], \quad \text { and } \quad \mathbf{x}=\left[\begin{array}{l}
c_{0} \\
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right]
$$

$A \mathbf{x}=\mathbf{b}$ is equivalent to the system of equations

$$
\begin{aligned}
c_{0} & =0 \\
c_{0}+4 c_{1}+c_{2} & =3\left(e^{2}-2 e+1\right) \\
c_{1}+4 c_{2}+c_{3} & =3\left(e^{3}-2 e^{2}+e\right) \\
c_{3} & =0
\end{aligned}
$$

This system has the solution $c_{0}=c_{3}=0$, and

$$
\begin{aligned}
& c_{1}=\frac{1}{5}\left(-e^{3}+6 e^{2}-9 e+4\right) \approx 0.75685 \\
& c_{2}=\frac{1}{5}\left(4 e^{3}-9 e^{2}+6 e-1\right) \approx 5.83007
\end{aligned}
$$

$$
\begin{align*}
b_{j} & =\frac{1}{h_{j}}\left(a_{j+1}-a_{j}\right)-\frac{h_{j}}{3}\left(2 c_{j}+c_{j+1}\right), \tag{3.20}\\
b_{0} & =\frac{1}{h_{0}}\left(a_{1}-a_{0}\right)-\frac{h_{0}}{3}\left(c_{1}+2 c_{0}\right) \\
& =(e-1)-\frac{1}{15}\left(-e^{3}+6 e^{2}-9 e+4\right) \approx 1.46600, \\
b_{1} & =\frac{1}{h_{1}}\left(a_{2}-a_{1}\right)-\frac{h_{1}}{3}\left(c_{2}+2 c_{1}\right) \\
& =\left(e^{2}-e\right)-\frac{1}{15}\left(2 e^{3}+3 e^{2}-12 e+7\right) \approx 2.22285 \\
b_{2} & =\frac{1}{h_{2}}\left(a_{3}-a_{2}\right)-\frac{h_{2}}{3}\left(c_{3}+2 c_{2}\right) \\
& =\left(e^{3}-e^{2}\right)-\frac{1}{15}\left(8 e^{3}-18 e^{2}+12 e-2\right) \approx 8.80977
\end{align*}
$$

$$
\begin{align*}
& c_{j+1}=c_{j}+3 d_{j} h_{j} . \tag{3.17}\\
& d_{0}=\frac{1}{3 h_{0}}\left(c_{1}-c_{0}\right)=\frac{1}{15}\left(-e^{3}+6 e^{2}-9 e+4\right) \approx 0.25228, \\
& d_{1}=\frac{1}{3 h_{1}}\left(c_{2}-c_{1}\right)=\frac{1}{3}\left(e^{3}-3 e^{2}+3 e-1\right) \approx 1.69107, \\
& d_{2}=\frac{1}{3 h_{2}}\left(c_{3}-c_{1}\right)=\frac{1}{15}\left(-4 e^{3}+9 e^{2}-6 e+1\right) \approx-1.94336 \\
& S(x)= \begin{cases}1+1.46600 x+0.25228 x^{3}, & \text { for } x \in[0,1], \\
2.71828+2.22285(x-1)+0.75685(x-1)^{2}+1.69107(x-1)^{3}, & \text { for } x \in[1,2], \\
7.38006+8.8097(x-2)+5.8307(x-2)^{2}-1.94336(x-2)^{3}, & \text { for } x \in[2,3] .\end{cases}
\end{align*}
$$

Illustration

To approximate the integral of $f(x)=e^{x}$ on $[0,3]$,

$$
\begin{aligned}
\int_{0}^{3} S(x)= & \int_{0}^{1} 1+1.46600 x+0.25228 x^{3} d x \\
& +\int_{1}^{2} 2.71828+2.22285(x-1)+0.75685(x-1)^{2}+1.69107(x-1)^{3} d x \\
& +\int_{2}^{3} 7.38906+8.80977(x-2)+5.83007(x-2)^{2}-1.94336(x-2)^{3} d x \\
= & 19.55229
\end{aligned}
$$

The exact value is,
$\int_{0}^{3} e^{x} d x=e^{3}-1 \approx 20.08553692-1=19.08553692$

